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1.  INTRODUCTION

The computation of a detailed geoid, or of a detailed gravity poten-
tial field, in limited areas, especially in mountainous regions, has not
been very much in the focus of attention recently. There may be various
reasons for this.

For two decades now, global geoid determinations, either from satel-
lite data or from a combination of satellite and gravimetric data have been
in the center of interest (cf. Lerch, et al., 1979; Reigber, et al., 1983;
Rapp, 1981). Even (almost) purely gravimetric global geoids have heen
successfully computed (cf. March and Chang, 1979).

Over the oceans, the geoid is now known to an accuracy of perhaps +1
or +2m, due to satellite altimetry. Unfortunately, satellite altimetry

does not work over land areas. The classical method for a detailed geoid
determination on the continents is the gravimetric method, in spite of the

fact that it is severely handicapped by lack of an adequate gravity
coverage (or lack of information on such a coverage). Thus we have the
paradoxical situation that on the oceans, long a stepchild of geodesy, the
geoid is now in general known much better than on the continents.

Still, the gravimetric method has continued to fascinate theoreticians
because it gives rise to very interesting and deep mathematical problems,
related to the geodetic boundary-value problem, or problem of Molodensky
(cf. Moritz, 1980, Part D). In the recent years, the combination of satel-
lite altimetry on sea and gravimetry on land has led to another interesting
boundary-value problem, the altimetry-gravimetry boundary-value prohlem
(cf. Sansn, 1983).

These enormous practical and theoretical developments concerning
global satellite and gravimetric gravity field determination have somewhat
overshadowed the determination of detailed geoids in smaller areas.
Especially in mountainous regions, such local geoid determinations are
difficult. The gravimetric method does not work very well in high
mountains. The astrogeodetic method, using astronomical observations of

. .
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latitude and longitude, does work well there, but is considered time-
consuming and somewhat old-fashioned, perhaps also because working during
the night is not very popular nowadays. An appropriate use of gravity and
astrogeodetic data in high mountains must involve some topographic-
isostatic reduction, which is also sometimes considered old-fashioned.
Furthermore, the theory behind the astrogeodetic method is not nearly as
attractively difficult as the theory of Molodensky's problem. Last but not
least, high-mountain areas are exceptional and, apart from such countries
as Switzerland and Austria, are frequently regions of little economic
interest. For these and similar reasons, the main stream of geodetic
practice and theory has flown with grand indifference around high
mountains, ignoring such trivial obstacles.

Still, a country such as Switzerland has made a virtue out of neces-
sity and has traditionally teen very active in local astrogeodetic genid
determination (Elmiger, 1969; Gurtner, 1978; Gurtner and Elmiger, 1983).
Recently, Austria has followed up (Lichtenegger, et al., 1983). It has
been found that, even besides the problem of getting the required
observations, the underlying theory is not so trivial as one might think
and shows quite interesting features. :

Concerning measurements, astronomical observations have again proved
very feasible in mountains; see the articles by Erker, Bretterbauer,
Lichtenegger and Chesi in Chapter 2 of (Lichtenegger, et al., 1983). The
main advantages of astrogeodetic versus gravimetric data for local geonid
determination in mountain regions may be summarized as follows:

1. It is sufficient to have astrogeodetic deflections of the verti-
cal in the region of geoid determination; no data are needed outside that
region as they would be in the gravimetric method.

2. Errors in the topographic height have significantly less influ-
ence nn deflections than on gravity data. Thus a relatively crude terrain
model will be sufficient for the use of astrogeodetic data.

As a matter of fact, the two types of data are not mutually exclusive;
an optimal geoid determination will combine astrogeodetic deflections of
the vertical, gravity anomalies, and possibly data of other type. A suita-
ble technique for this purpose is least-squares collocation.
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From the observational point of view it is interesting to note that
inertial surveying techniques will be able to furnish deflections of the
vertical and gravity anomalies rapidly and with sufficient accuracy for
many purposes.

Let us finally try to give a list of various methods of genid de-
termination:

conventional satellite techniques (doppler, laser, etc.)

satellite-to-satellite tracking

satellite gradiometry

satellite altimetry

aerial gradiometry

gravimetry

astrogeodesy
As a general rule, these methods are listed in such a way as to start with
the most global and end up with the most local method, that is, according
to decreasing globality or increasing locality. In general, going down the
Tist also corresponds to increasing resolution and accuracy.

Again it should be stressed that these methods complement each other
and should be combined for best results.

The present report deals primarily with the lower end of the list,
providing a detailed theory of local geoid determination in areas with dif-
ficult topography. The role (and necessity) of topographic-isostatic re-
duction is investigated in detail. The computations for Austria give con-
crete numerical results for questions which have been much discussed theo-
retically, such as the difference between geoidal heights and height ano-
malies according to Molodensky {quasigeoidal heights), or the numerical
effect of analytical continuation from the earth's surface to sea level.
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FIGURE 1. The basic geometry
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Fig. 1 illustrates the basic quantities. In the classical theory, the
geoid is defined by its deviation N from a reference ellipsoid; N is
the geoidal height. The geoid is a level surface W = wo = const. of the

gravity potential W ; the ellipsoid is defined to be the level surface U
b = UO = const. of a normal gravity potential U ; the constants b% and Uo
are usually assumed to be equal. Cf. PG, sec. 2-131).
For the modern theory according to Molndensky (PG, sec. 8-3), to each
point P of the earth's surface we associate a point Q in such a way

that 0 1lies on the straight ellipsoidal normal through P and that

1
u(Q) = W(P) )
That is, Q 1is defined such that its normal potential U equals the
actual potential W of P .
This corresponds to the classical relation
U =U(Q) =WP)=W (2)

mentioned above, by which l% is taken to bhe equal tolg ; ¢f. Fig. 1.
By the same correspondence, the height anomaly according to Mnlodensky,

3
c=QP (3)
is the modern equivalent of the classical geoidal height,
N = QP () ]
= 0P DR
3 ,- ‘_1
1) By the symbol PG we shall in the sequel denote the hook .
"Physical Geodesy" (Heiskanen and Moritz, 1967).
®
=
1




g . ;
. Using the anomalous potential

T=W-U , (5)

we have according to Bruns' theorem

-0, 0,

Yy denoting ellipsoidal normal gravity.

The points PO form the geoid, and the points Qo constitute the
ellipsoid, both being level surfaces (of W and U , respectively). On
the other hand, the points P form the earth's surface, and the set of
points 0 defines an auxiliary surface, denoted as telluroid according
to R. A, Hirvonen. As a matter of fact, neither the earth's surface nor
the Telluroid are level surfaces, which makes matters more complicated than
in the classical situation, where we deal with level surfaces.

Following a suggestion of Molodensky, one could plot the height
anomalies 7 as vertical distances from the reference ellipsoid. Thus one
ohtains a geoid-like surface, the quasi-geoid, and ¢ could be considered
as quasi-geoidal heights. In contrast to the geoid, however, the quasi-

geoid is not a level surface and does not admit of a natural physical
interpretation. Therefore, working with height anomalies ¢ , it is best
to consistently consider them quantities referred to the earth's surface
(vertical distances between earth surface and telluroid), rather than using
the quasi-geoidal concept.

The classical gravity anomaly A;O at sea level is defined as

ag, = 9(P ) - ¥(Q) . (7)
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where g denotes gravity and vy , normal gravity. (So far, g(PO) de-
notes the actual gravity on the geoid; we are not yet considering mass-
transporting gravity reductions.)

Analogously we have according to Molodensky:

ag = g(P) - v(Q)

Generally we shall, as far as feasible, use the subscript "o" to de-

1 signate quantities referred to sea level, to distinguish them from
quantities referred to the earth's surface, which do not carry such a sub-
script. For instance, Ago refers to sea level and Ag , to the earth's
surface.

Regarding plumb-line definition, we must distinguish three lines (Fig.
1):

(a) The straight ellipsoidal normal QOP .

(b) The actual plumb-line PB'P ,
(¢) The normal plumb-line Pg> .

The ellipsoidal normal is geometrically defined as the straight line
through P perpendicular to the ellipsoid. The (actual) plumb line is de-
fined by the condition that, at each point of the line, the tangent
coincides with the gravity vector g at that point; the plumb line is
very slightly curved, but its curvazhre is irregular, heing determined by
the irregularities of topographic masses. The normal plumb line, at each
of its points, is tangent to the normal gravity vector Yy ; it possesses a

ey 'T'Vf—' v ,'r'v,v ] T Py
. . ' . e . .
e N S ) - Lo -

curvature that is even smaller and compietely regular.
The points P0 . P; , and PB‘ coincide within a few decimeters,
and we shall not distinguish them in the sequel. The reason is that the

distance, in seconds of arc, between P0 and Pé' , is much smaller than
the effect of plumb line curvature (PG, p. 180-181). The same holds, of
course, for Q, , Qp , and 0Q5' .

— — ? QPP TP R S P S P



i . The direction of the gravity vector g is the direction of (the
' tangent to) the plumb line. It is determined by two angles, the
astronomical latitude @ and the astronomical longitude A . Llet ¢, A

be referred to the earth surface (to point P ) and ¢o . Ao to the

geoid (strictly speaking, to point Pg ). The differences

- - = A - (9)
' §o ¢o % , SA Ao A
P
63
o
&, -
\\\/ Q ' )
\{ R
- S
o ~N- parallel to
=~ equatorial plane

|-

FIGURE 2. Curvature of the plumb line along a north-south profile
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express the effect of plumb-line curvature (Fig. 2). Hence we have

¢o =9+ 8 , Ao = A+ SA

Knowing the plumb-line curvature ( ¢ , 6A ), we could use these simple
formulas to compute the sea-level values ¢o . AO from the ohserved
surface values ¢ , A |

In the same way as ¢ , A are related to the actual plumb line, the
geodetic latitude ¢ and the geodetic longitude X refer to the straight

ellipsoidal normal. The quantities

£E=%-9¢ , n = (A =X )coso

are the components of the deflection of the vertical in a north-south and

an east-west direction. For an arbitrary azimuth o« , the vertical de-
flection € 1is given by

€ = §cosa + nsina

These quantities & , n , € refer to the earth's surface. Cf. Fig. 1,

which shows € .
Similarly we have for the geoid

(13)

E =0 -¢ , n = (A - A)cosop ,

(14)

m
It

+ X
Eocosa nos1na

T

‘e
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See again Fig. 1 for €, noting that we do not distinguish the normals
in 0O and 0'8 as we have mentioned above.

In addition, we need the normal direction of the plumb line at the
surface point P ; it is defined as the tangent to the normal plumb line
at P : the corresponding latitude and longitude will be denoted by ¢ ,

A . Hence we have

$=9%+ 38 , X=X+, (15)

) where &¢ , SA express the normal plumb-line curvature. These equations

i are the "normal equivalent" to (10): the "normal surface values"§ , X
» correspond to the "actual surface values"® , A , and the ellipsoidal
- values ¢ , X correspond to the geoidal values ¢O s Ao . (To make

H’ the analogy complete, we should replace ¢ = ¢(PO) by ¢(P$) , but we
have consistently been neglecting such differences.)

In marked contrast to the actual plumb-line curvature, it is very easy
to compute the normal curvature of the plumb line: by PG, p. 196 we have

(16)

5o = -0.17"'h msin2¢ s S =0 ,

k

hkm denoting elevation in kilometers.
Since the ellipsoidal normal and hence ¢ , A are geometrically
defined, we may call the quantities (11) "geometric deflections of the

vertical" at the earth's surface. On the other hand, the normal plumb line
is physically (or dynamically) defined by means of the external gravity
field of an equipotential ellipsoid. Hence also ¢ , X are dynamically
defined, and we may call the quantities obtained hy replacing ¢ , A by

D A

3

T=0-3 , 7= ( AX )cos (17)

b

B |

ye -
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"dynamical deflections of the vertical" at the earth's surface. By (15)
and (16) we have

E=£+6¢s n=n

since 88X =0 . For an azimuth o we accordingly have

€ = Tcosa + nsina

Compare € and € in Fig. 1, and note that in this figure, & denotes
the curvature of the normal plumb line for the azimuth «o , given by the
analogous formula

§ = 84cosa + (8Acosg)sina = Socosa

uh mtinetdhaaitbabsteteesinn Y

S
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3. Astronomical Leveling

plumb ellipsoidal
line normal

Eo geoid

dN

ds

ellipsoid

FIGURE 3. Astronomical Leveling according to Helmert
From Fig. 3 we take the well-known differential relation

- . (21)
dN eods ’

€, denoting the deflection of the vertical at the geoid. Integration

between two points A and B yields the difference between their genidal

heights:
B
- (22)
NB - NA = - Afﬁods s
or approximately,
oA T SoB (23)

_— 0
B~ - 7 Sm °
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where spg denotes the horizontal distance between A and B. The minus

sign is conventional,

earth’s surface

dh

ds

UsWp

FIGURE 4. Astronomical leveling according to Molodensky

A corresponding relation to height anomalies according to Molndensky
is found as follows (Molodensky, et al., 1962, p. 125):

’

=3 14
dg = 52 ds + ¢ dn

notations following Fig. 4. Since the earth's surface is not a level sur-
face, we also have a vertical part ( 3 /3h } h in addition to the
usual horizontal part ( 3G /3s Y ds . The vertical part arises from
change in height and is usually smaller than the horizontal part.

In analogy to (21), the horizontal part is given hy

..£

.

’ - —.-1

. b

‘

| I

e
L
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€ denoting the dynamical deflection of the vertical at the earth's
surface; cf. (19) and Fig. 1. For the vertical part we have by (6);

3 .3 I\ _1far |13y (26)
ah sh \ vy vy \o Y ah

or
8¢ . _ 49 . _g-y (27)
3h Y Y

according to the fundamental equation of physical geodesy (PG, p. 298, eq.
8-20)).
Hence (24) becomes

dg = -eds - 9;{1 dh (28)

On integrating this relation we get the difference of the height anomatly

B8

L’B";A='f

Tds - fséﬂ dh s (29)
A K Y
The gravity anomaly Q&g refers to the earth's surface according to (8).
The first term on the right-hand side represents the Helmert integral (22)
of the surface deflection € , and the second term is Molodensky's
correction to the Helmert integral, necessary to obtain height anomalies.
This correction depends on the gravity g at the earth's surface.

PSP U VPP ST
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4, Reduction for Plumb-Line Curvature

For Helmert's formula (22), the deflection component e, refers to
the geoid. In fact, by (13) and (14) we have

€ = (¢o -¢)cosa + (A0 -A)cos¢sina (30)

where the astronomical coordinates ¢o . AO are taken at the geoid and

given by (10):

31
o, = ¢+ 80 , Ao = A+ SA (31)

Thus the astronomically measured surface values ¢ , A must be reduced
to sea level by applying corrections &% , &A for plumb-line curvature.
These corrections may be expressed by

8¢ = Q%%EL s SAcosd = 2%%21 > (32)

where 0C denotes the orthometric correction in leveling and the local
axes x and y are horizontal and directed towards north and east, res-
pectively. Thence follows (PG, p. 195):

8¢ = -

al |=x

%ﬂ + 229 tapg , SAcos¢ = -
X §' 1

alix

3, 9T yane (33)
oy a 2

Here, H denotes the orthometric height (the length of the curved plumb
1ine segment POP in Fig. 1), 9 is the mean value of gravity altong the
plumb line between P_ and P , and B1 and £ designate the an-

gles of inclination of a terrain profile in a north-south and an east-west

direction.

A ol aim A A e a o
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Using these formulas, we thus have first to differentiate the ortho-
metric correction in a horizontal direction (by (32)) and then to integrate
by the Helmert formula (22). As a matter of fact, differentiation and sub-
sequent integration should give back the original quantity, but they will
in general fail to do so exactly because of inaccuracies inherent in the
processes of numerical differentiation and integration.

Thus it is preferable to apply the orthometric correction directly to
the geoidal height difference: by PG, pp. 200-201 we have

- (34)
B~ NA = - Astds - OCAB )

N

where 0Cpg denotes the orthometric correction along the profile AB

and is the "geometric deflection of the vertical" at the earth's surface

given by (11) and (12); cf. a corresponding remark at the end of Sec. 1.
Eq. (34) thus represents a classical analogue of the Molodensky

formula (29). This analogy is particularly conspicuous if we write (34) in

differential form, using (32) and (33):

dN = -eds + B dg - L2 aH . (35)
g 9

The comparison of this expression with its analogue (28) shows as the
main difference the fact that (35) contains mean gravity @ . Now,
g is the average of all values of gravity along a plumb-line between
sea level and earth's surface, and gravity inside the earth cannot be
measured, nor can it be computed rigorously because the rock density o
inside the earth is unknown. Thus g cannot be determined with
complete rigor.

This is the point where Molodensky's criticism of the classical theo-
ries of physical geodesy enters. This criticism is fully justified from a
conceptual point of view and has heen extremely fruitful for the de-
velopment of modern theoretical gendesy. On the other hand, from a practi-
cal point of view, we may say that, with a reasonably realistic
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density model, mean gravity T and hence orthometric heights H
and geoidal heights N can be computed quite well with satisfactory
accuracy; cf. the simple estimates in PG, p. 169,
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5. Approximate Reduction for Plumb-Line Curvature

A sufficiently precise determination of plumb-line curvature according
to (33) or of the orthometric correction in (34) is rather cumbersome,
however.

An approximate procedure (Elmiger, 1969; Gurtner, 1978) uses an
analogy to classical gravity reduction, applied to the direction of the
gravity vector: gravity reduction is applied to the magnitude g of the
gravity vector g.

o |
earth’s surface
-4
topographic o
masses =
seq level ~'1
R : (geoid)

FIGURE 5. The geometry in gravity reduction
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Consider first the gravity reduction of Poincare-Prey (PG, p. 165):
cf. Fig. 5. It consists of the following three steps:

1. The topographic masses, i.e., the masses ahove the genid, are re-
moved computationally by subtracting its attraction AT from the ob-
served gravity value ¢ at the surface point P .

2. The reduced gravity value g - AT so obtained at P 1is trans-
ferred to point PO at sea level by adding the free-air reduction

F .
3. The topographic masses are restored hy addirg its attraction
AT at Py .
The result of these three steps,

- e]

gives actual gravity g, on the geoid. A weak point of the procedure
(apart from errors in At and A? due to imperfect knowiedge of
density o ) is the computation of the free-air reductionl F by the

formula

= .9 (37)
F S H

replacing the vertical gravity gradient of the actual gravity field (after
removal of the topographic masses) by the normal gravity gradient 9y/3h.

The astronomical coordinates ¢ and A (defining the direction of
the gravity vector g ) can be treated in complete analogy. Let £7 be
the £ component of the deflection of the vertical at P as computed from
the topographic masses only. Let further be gTO the corresponding
topographic deflection of the vertical at PO . In complete analogy to
the three steps mentioned above we have now:

1)  So called hecause after the removal of the topographic masses, the
point P 1lies "in free air".
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B measured at P L. ..iiienenn tecersscesetesssssanssssesscessasseess O

Ef 1. removal of

[ topography, at P ..... Cetesssaesesacterssacassssasasesstrnse ET
2. "free-air reduction" P - P,

F = normal plumb-Tine CUrvature ....vcceeecessescessccccansans 8O
3. restoration of

5 topography, at P, csseesscacsess et escesarassscccccevones g%

E The result of these three steps,

- o]
¢0-®-5T+’5¢+€T,

thus gives the astronomical latitude Qo at the geoid. This formula is
completely analogous to (36).

The comparison of (38) with (10) yields, for the actual plumb-line
curvature 89 , the approximate expression

S0 = - g *+El *+89

where &8¢ denotes the normal plumb-line curvature (16). By (10), (11),
and (13) we thus get for the vertical deflectinn at the geoid:

£ . =¢ -¢=9¢-¢+60=¢+ 60 , (40)

with an analogous equation for the component N, -
Within the accuracy of this procedure we thus obtain actual vertical

deflections on the genid, in the same way as the Pnincare-Prey reduction
gives actual gravity on the geoid. Hence we may apply to £O s Ny the
Helmert formula (22) fto get differences of the geoidal height N

[f we have a reasonably realistic density model for the topographic
masses, we can compute & , nr  and g? , n? with an accuracy

which might he satisfactory for many purposes. The weak point of the
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procedure, in the same way as for gravity reduction, is the computation of
the "free-air reduction" of the plumb line by applying the normal
plumb=line curvature.

Physically this implies the assumption that, after the removal of the
topographic masses, the earth's crust is "regularized" to such an extent
that its external gravity field will then be approximately equal to the
normal ellipsoidal gravity field. This assumption would mean that the
co-geoid of the Bougner reduction (PG, sec. 3-3) coincides with the
reference ellipsoid. In fact, however, these co-geoid heights are, by an
order of magnitude, larger than the actual geoid heights (Helmert, 1884,
pp. 354-57; PG, sec. 3-6). It is true that these large cogeonidal heights
have a smooth and regional behavior and thus affect the local plumb-line
curvature to a lesser degree, but the assumption of a normal plumb-line
curvature is nevertheless rather questionable.

Topographic-isostatic reduction. A considerahly hetter

"regularization" of the earth's crust may be expected from the application
of a topographic-isostatic reduction. The large regional features of the
co-geoid are essentially reduced in this way. The important step is to
take some isonstatic model, and it is not so essential which isostatic model
is taken; a conventional Airy-Heiskanen model with T = 30km (PG, Sec.
3-5) may be satisfactory in many cases.

Physically, a topographic-isostatic reduction means that the
topographic masses {(above the geoid) are computationally removed and used
to fill the mass deficiencies which exist below sea level according to the
theory of isostasy. If the isostatic compensation were exact, the earth's
crust would become completely homogéneous after such an isostatic
reduction, so that the irregularities of the geoid would disappear after
reduction: the isostatic co-geoid would, theoretically, coincide with the
reference ellipsoid. In reality, of course, no isostatic model exactly
corresponds to the actual geological situation, so that, rather than
coinciding with the ellipsoid, the isostatic co-geoid will deviate less and
more smoothly from the ellipsoid than the geoid does. Thus the
topographic-isostatic reduction achieves a considerable smoothing of
geoidal heights and, especially, of deflections of the vertical; cf. Sec.
10,
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For the present purpose it is of particular interest that also the
curvature of the plumb~line will be smoothed by the topographic-isostatic
reduction. In this way it will certainly become closer to normal plumb-
1ine curvature than with a mere removal of the topographic masses.

Therefore it is appropriate to modify the reduction procedure given at
the beginning of the present section, in such a way that in Step 1 the
topography is not merely removed completely but that it is transported into
the interior of the geoid in order to make up the isostatic mass de-
ficiencies. This procedure has to be reversed in Step 3 in order to re-
store the original topography. By this we achieve that the free-air re-
duction by means of the normal plumb-line curvature (Step 2) appears to be
better justified.

For our computation this means that the vertical deflections & ,

nt , computed from the topographic masses, are to be replaced by de-
flections &1y , N7y representing the combined effect of the
topographic masses and their isostatic compensation. The numerical com-
putation is done by the same formulas as for €& , Nr by dividing
the topographic and compensating masses into vertical prisms, if possible
using a digital terrain modell. The underlying isostatic model should be
reasonably realistic and, above all, simple and well defined, such as the
Airy-Heiskanen model.

Then eq. (39) is to be replaced by

- - o)
8¢ = - &rp &t oo

1) Relevant formulas can be found in (Forsberg and Tscherning, 1981)
with references to (MacMillan, 1958, pp. 78-79) and (Jung, 1961,

p. 167).
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where &r1 and €$I express the deflection effect of the topographic
and compensating masses at points P and Po . By (40) we then have

= - 0 = - °
SoTE bttt o =N -ty > (42)

as the normal curvature component ©SXA is zero.

Let us repeat once more that & , n denote the "geometrical” sur-
face deflections (11) and that Eo s
vertical on the geoid (and not on the isostatic co-geoid!). Eq. (22) will
then give differences of geoidal heights N .

N, denote the deflections of the

It should be noted, however, that even (41) is only an approximate ex-
pression for the actual plumb-line curvature, an expression which is better
than (39) but nevertheless affected by a certain error.

From a conceptual point of view let us emphasize once more that the

geoidal values & n_ as computed from (42) correspond to actual

s
gravity anomah‘eso 9, 3 at the geoid, where g, denotes actual gravity
at the geoid (inside the masses) as provided by the reduction of Poincaré
and Prey (PG, p. 146). Topographic-isostatic reduction has only been an
auxiliary device to compute 50 » Ny in a better way. In the next sec-
tion we shall, however, use isostatic reduction in a way that is analogous

to classical geoid determination by gravity reduction.
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6. Determination of the Co-geoid

N D
!

The application of topographic-isostatic reduction, described in the
preceding section, admits of an interesting alternative variant. In the
preceding section, the isostatic co-geoid was mentioned to provide a con-
ceptual background, but it was not used explicitly since Eo » N, were
applied to determine the geoid directly. The alternative approach to be
described now determines first the isostatic co-geoid, from which the geoid
is obtained by taking into account the indirect effect. This approach
fully corresponds to classical gravimetric geoid determination by isostatic

gravity reduction (PG, Secs. 3-6 and 8-2).

In the three-step approach described in the preceding section we will
only perform Step 1 -- removal of topography plus isostatic compensation in
their effect at P -- and Step 2 ~- free-air reduction from P to Py by
applying the normal plumb-line curvature 8¢ ., The third step --

restitution of topography -- will be omitted. The result is thus ;,q
o C
= - F + = - .
EO g QTI ‘S¢ ’ no n nTI ’ (43)

it gives boundary values since after the removal of topographic masses, sea

level represents a boundary of the solid earth. More exactly, this bound-

c

. . . . . c
ary surface is the isostatic co-geoid. The deflections EO . no as

given by (43) are the precise equivalent of isostatic gravity anomalies

Ag§= 591 (PG, p. 140) and likewise refer to the co-geoid.

Then it is possible to apply the Helmert formula (22) to Eg R ng
to obtain differences of co-geoid heights MNC
o c _ C (44)
NB - NA = jBeOds s
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with

c

- € C.: (45)
= a + sino
eo Eocos no

From the co-geoid obtained in this way we get the actual geoid by ap-
plying the indirect effect; cf. PG, p. 141. Thus, the genidal height N
follows from

{
N = NC + oN (46)
For the indirect effect &N , an application of the Bruns formula (6)
gives
70
SN = __l; , (47)

where T?I denotes the potential of the topographic masses together with
their isostatic compensation, taken at the geoidal ponint PO . This
potential is computed similarly as the effect of the topographic-isostatic
masses on the gravity anomaly and on the deflection of the vertical.

If we have applied this procedure correctly, we should theoretically
get the same result for the geoidal height N as if we had used the
Helmert integration of the vertical deflections 50 s Ty given by (42).
Thus the indirect effect ON must satisfy the relation

B
I (£$ICOSG + nglsina)ds

SN - 6N, = -
B A K

For the present method, this result is of little use since <N is computed
directly from (47); perhaps it could be used for checking purposes.
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An advantage of the present procedure is the fact that the isostati-
cally reduced vertical deflections gg R ng , being much smaller and
smoother, can be interpolated better than the surface values g , n and
also better than the geoidal values go s Ny - Being only an es-
sentially equivalent modification of the procedure of Sec. 5, it shares,
however, its main drawback: the application of the normal plumb-line

curvature reduction &¢ is problematical.
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7. Topographic-Isostatic Reduction from a Modern Point of View

For the reasons mentioned at the end of the preceding section, it is
natural to try and find a way which makes use of the clear advantages of
the topographic-isostatic reduction but avoids the problems inherent in a

free-air reduction from P to PO .

For this purpose let us once more consider eqs. (43) but interpret
them differently. We shall put

£ =¢- &1 8 n®=n - "1 (49)
By means of (18) this may be written
— c —
=% - &1 N =N o-ongg (50)

The interpretation of (50), however, is clear, simple, and rigorous:
from the dynamic deflections of the vertical at P , which are the very
quantities & and N , we subtract the effect of the topographic-
isostatic masses, &7; and nyp , likewise at P . The vertical de-
flections so obtained, & and r , thus do not really refer to the
(co-)geoid; in reality, they refer to the earth's surface!
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But what, then, means the normal plumb-Tine curvature &8¢ in (49)?
Noes it not mean a reduction from the earth's surface to sea level? No, in
eqs. (18) it only denotes the transformation between the geometrical and
the dynamical deflection of the vertical, both referred to the point P of

the earth's surface. This is also clear from Fig. 1, which illustrates the
formula

e+ 8§ ,

™|
"

extending (18) to an arbitrary azimuth, & bheing defined by (20).
This interpretation of (49) or (50) as isostatically reduced de-
flections of the vertical at the earth's surface is exact, whereas the

interpretation of (43) as deflections at the co-geoid was only approximate.
Therefore we now have written Ec R nc instead of our former notation

gg , ng . This is the desired rigorous interpretation of our
isostatically reduced vertical deflections.

This interpretation exactly corresponds to the modern view of gravity
reduction according to the theory of Molodensky as described in PG, sec.
8-11. According to this view, the isostatically (or in some other way)
reduced gravity anomalies continue to refer to the earth's surface. The
classical gravity reduction (PG, sec. 8-2) had comprised two procedures:
mass transport and shift P > Po ; the new view of gravity reduction only
considers the mass transport; the problematic shift P - Po is avoided.

Formally, a "normal free-air reduction":

)4 (52)
F=-Sn

may he said to occur also in Molodensky's theory: normal gravity Y in
the new definition (8) of the gravity anomaly, where it refers to the
telluroid point Q , is computed by

e~ v —
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with h = OOQ denoting the normal height of P . But instead of re-

ducing actual gravity g downward, from P to PO , now normal gravity

is reduced upward. Whereas for the first process the use of the normal

gradient dy/ sh is problematic, it is fully justified for the second
process.

In a similar way, we might, if we wish, interpret &¢ as a reduction
of ¢ for normal curvature of the plumb-line upwards, say, from PO to

P . This is possible because in (15), ¢ could be said to refer to P!
(because PO and PB practically coincide), and because ¢ denotes {he
latitude of the tangent to the normal plumb line at P . This inter-
pretation is instructive because of the analogy with gravity reduction,
though regarding ¢ and ¢ as geometric and dynamic latitude of the same
point P appears more natural.

As pointed out above, the present interpretation of gc and nc as
isostatically reduced deflections of the vertical at the earth's surface is
conceptually rigorous and therefore also practically more accurate, but
this decisive advantage impiies a computational drawback if integration
along a profile is used; since this integration must now be performed along
the earth's surface and not along a level surface such as the geoid, com-
putation will be more complicated. Instead of the simple Helmert formula

(22) we now must use the Molodensky formula (29):

B B ¢
c_.,C_ _ Cic . 9=y (54)
g = %A A[ e ds Af v dh

with

c .C C_.
€ = & cosa +nsina
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9¢ being the isostatically reduced surface value of gravity (measured
value g minus attraction of the topographic-isostatic masses).
From the isostatic height anomalies EC obtained in this way, we then
get the actual height anomalies L by applying the indirect effect:

z=¢"+6g (56)

with

s Tl (57)

Y

This is completely analogous to (46) and (47), but now Typ is the
potential of the topographi.-isostatic masses at the surface point P .

As a matter of fact, normal gravity in (47) refers to the ellipsoid, and in
(57), to the telluroid, but the difference is generally small.

For higher mountains, the isostatic reduction procedure described in
the present section is preferable in practice to a direct application of
Molodensky's formula (29) because the isostatically reduced vertical de-
flections are much smoother and easier to interpolate. It is, however, ex-
tremely Taborious from a computational point of view since the integration
must be performed along the earth's surface (or, what is practically the
same, along the telluroid).

The procedure described in Sec. 6 is easier and less laborious since
the integration is performed along a level surface. It is, however, not
rigorous theoretically and less accurate practically. Now we can also
understand the error inherent in the procedure of Sec. 6: the isostatic-

g , nc at sea level are by (43) simply put

ally reduced deflections ¢ o
equal to the corresponding surface deflections (49). In reality, however,

gc , nc and gg s ”g are related by analytical continuation and by no

Y
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means identical. For the concept of analytical continuation cf.{ PG, sec.
8-10 and p. 324); for the magnitude of the effect of analytical

continuation on & see Sec. 10.
Finally, we remark that the computational drawback of the present

method, the Molodensky integration along the earth'’s surface, can be
completely avoided if we perform our computations in space: instead of
integrating along a surface, we perform collocation in space. This modern
procedure, to be described in the next section, permits a simple and
computationally convenient use of surface deflections and also their
combination with gravimetric and other data.
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3. Least-Squares Collocation

The principle of collocation is very simple. The anomalous potential
T outside the earth is a harmonic function, that is, it satisfies
Laplace's differential equation

An approximate analytical representation of the external potential T is
obtained by

T(P) = f(P) = ébk%“’) , (59)

that is, by a linear combination f of suitable base functions ¢ ,
% , .« .. » 0 with appropriate coefficients by . Al these
are functions of the space point P under consideration.
As T is harmonic outside the earth's surface, it is natural to

choose base functions ¢k which are likewise harmonic, so that

A¢k=0 t]

in correspondence to (58). .

There are many simple systems of functions satisfying the harmonicity
condition (60), and thus we have many possibilities for a suitable choice
of hase functions ¢k . He might, for instance, choose spherical harmon-
ics or potentials of suitably distributed point masses, depending on
whether we emphasize global or local applications.
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The coefficients by may be chosen such that the given obser-
vational values are reproduced exactly, for instance, all deflections of
the vertical in a given area. This means that the assumed approximating
function f in (59) gives the same deflections of the vertical at the ob-
servation stations as the actual potential, and hence may well be con-
sidered a suitable approximation for T .

Let us now try and put these ideas into a mathematical form.

Interpolation. Let errorless values of T be given at g spatial
points Py , P2 , .. , Pq ; these points may lie on the

earth's surface or in space above the earth's surface. We put

and postulate that in approximating T(P) by f(P) , the observations
(61) will be reproduced exactly. The condition for this is

q .
k§|bk¢k(P1) = T(P.|) = f] s (62)

whence the system of linear equations,
q .
Z i = Ty with Ay = 4, (Py) (63)

or in matrix notation,

If the square matrix A is regular, then the coefficients by are uni-
quely determined by

YT
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This model is suitable, for instance, for a determination of the geoid

by satellite altimetry, since this method, rather directly, yields geoidal

! heights N; and hence, by Bruns' theorem (6), T(P;) = YyiNj .
: For the astrogeodetic geoid determination we must generalize this model,
l: which leads us to

Collocation. Here we wish to reproduce, by means of the approximation
(59), q measured values which again are assumed to be errorless (this as-
sumption is not essential and will be dropped later). These measured

values are assumed to be so-called linear functionals LT , LpT ,
.« e e LqT of the anomalous potential T .
In fact, deflections of the vertical,

":--I—a_T. n:_-]_.al (66)
“ Y x Yy
but also gravity anomalies,
=9 _z 67
A9 9z R T (67)

are such linear functionals; here, xyz denotes a local coordinate system
in which the z-axis 1is vertical upwards and the x and y axes are
directed towards north and east, and R = 6371km 1is a mean radius of the
earth. Eq. (66) is a consequence of (25), with 3s = 3x or 3y ; normal
gravity Y may be considered constant with respect to horizontal de-
rivation. Eq. (67) is the well-known fundamental equation of physical

geodesy in spherical approximation (PG, p. 298 and 88); the equations (66)

and (67) refer to the earth's surface.
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By saying that deflections of the vertical and gravity anomalies are
linear functionals of T , we simply indicate the fact that € , 7. ,
Ag depend on T by the expressions (66) and (67) which clearly are

linear; they are, of course, the linear terms of a Taylor expansion,

neglecting quadratic and higher terms. In the above notation LT , the
symbol Li denotes, for instance, the operation

=13 (68)
Li Y ax

applied to T at some point.
Putting

and substituting (59) we get

s _ (70)
i“]Bikbk 2, with Bo = Lo,

L;¢x denotes the number obtained by applying the operation L; to
the base function ¢¢ ; the coefficient Bj, obtained in this way
does not depend on the measured values. Eq. (70) is a linear system of g
equations for q unknowns, which is quite similar to (63). This method of
fitting an analytical approximating function to a number of given linear
functionals is called collocation and is frequently used in numerical
mathematics.

It is clear that interpolation is a simple special case of cnl-

location, in which

- (71)
Lif = f(P})

Akl 1-.';

A
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is the "evaluation functional", giving the value of f at a point
P; . Thus we see that in both interpolation and collocation, the

coefficients by require the solution of a linear system of equations
(which in general will not be symmetric).
Least-squares interpolation. Let us consider a function

K = K(P,Q) (72)

in which two points P and (O are the independent variables. Let this
function K be

- symmetric with respect to P and Q ,

- harmonic with respect to both points, everywhere outside a certain

sphere, and

- positive-definite
(the positive definitiveness of a function is defined similarly as in the
case of a matrix). Then the function K(P,Q) 1is called a (harmonic)
kernel function; cf, (Moritz, 1980, p. 205). A kernel function K(P,Q)
may serve as "building material" from which we can construct base

functions, Taking for the base functions the form

8, (P) = K(P,P,) (73)

where P denotes the variahle point and P, is a fixed point in space,
we obtain least-squares interpolation.

This name originates from the statistical interpretation of the kernel
function as a covariance function; then least-squares interpolation has
some minimum properties (least variance, similarly as in least-squares
adjustment). This interpretation is not essential, however; one may also
work with arbitrary analytical kernel functions, considering the procedure
as a purely analytical mathematical approximation technique. Normally one
tries to combine both aspects in a reasonable way.
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Substituting (73) into (63) we get

N . . (74)
Aj = K(PPL) = Gy s

this square matrix now is symmetric (in the general case, Ajx 1is not

symmetric!) and positive definite (because of the corresponding properties
of the function K(P,Q) ). Then the coefficients by follow from (65)

and may be substituted into (59). With the notation

the result may be written in the form
[ ¢, |7 ]
C]] C]Z te C1q 1
: = 21 ¥22 °°' “2q 2 (76)
f(P) [CP] CP2 cen Cpq] . . . . s
Gy oaen C f
cq1 Cq2 qu q
- - L

known from leasf-squares interpolation of gravity (PG, p. 268).
Least-squares collocation. Here we again derive the base functions

from a kernel function K(P,Q) , but in a way slightly different from
(73): we put

=1 77
8,(P) = Lk(P,Q) , (7)

where L0 means that the functional Ly is applied to the vari-
able Q ; the result no longer depends on Q (since the application of a
functional results in a definite number), Thus we must in (70) put

- 1P Q - 78
B, = LiLkK(P,Q) = Ciy (78)

3
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which gives a matrix which again is symmetric. Snlving (70) for by

and substituting into (59) gives with

- Q - (79)
ﬁ((P) = LkK(P9Q) - Cpk
the formula
. 1T
Ciq Cyp - c]q zﬂ
£(P) = [Cos C C. ] ‘21 C22 -+ “oq *2 (80)
- P-I P2 . e 0 Pq - . * .
" C...C. 0
Cq1 “a2 Caq o
L. o . u

This is formally the same expression as (76), but with f; replaced by

L5 and with "covariances" defined by (78) and
(79).

In the statistical interpretation, f(P)

Cik and Cpy

is an optimal estimate (in
the sense of least variance) for the anomalous potential T and hence for
the height anomaly ¢ = T/y on the basis of arbitrary measuring data. For
geoid determination in mountdin areas, relevant measuring data primarily
,and & .
by known analytical expressions (Moritz, 1980, sec. 15).

are & , n The covariances Cj, and Cp; are given

A general com-

puter program for collocation is described in (Sunkel, 1980).
Least-squares collocation may easily be generalized to observational

data affected by random errors; systematic effects may also be taken into

consideration. In addition to the estimated quantities { f

( in our pre-
sent case) we may also compute their standard error by a formula similar to
(80). A comprehensive presentation of a least-squares collocation may be

found in (Moritz, 1980).

-
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9. Application of Collocation to Geoid Determination

It is well known that the direct interpolation of free-air gravity
anomalies (which essentially are surface gravity anomalies (8)) in high
mountains, e.g. by least-squares interpolation, leads to relatively poor
results, because of the correlation of the free-air anomalies with ele-
vation (PG, sec. 7-10). This correlation with elevation constitutes a con-
siderable trend, which must be removed before the interpolation. Bouguer
anomalies take care of the dependence on the local irregularities of ele-
vation; isostatic anomalies are, in addition, also largely independent on
the regional features of topography (PG, p. 285).

In exactly the same way we must remove the main trend of the vertical
deflections £ , n and the gravity anomalies Ag by an isostatic re-
duction, before applying collocation. Thus isostatic reduction, pragmatic-
ally regarded as trend removal, is essentjal for the practical application
of least~-squares collocation in mountainous regions (Forsberg and
Tscherning, 1981).

Physically speaking, we transport the topographic masses to the inter-
ior of the geoid in such a way that the isostatic mass deficiencies are
filled. The observation point P remains in its position on the earth's
surface. In this way, not only the harmonic character of the anomalous
potential T outside the earth's surface is preserved, but, in addition,
the computational removal of the topographic masses above sea level makes
the function T harmonic down to sea level. Hence, the collocation

formula (80) can be applied also at sea level, giving co-geoid heights
NC . By applying the inverse reduction (the indirect effect) to the
computed height anomalies Z¢ and co-geoid heights NC¢ we get actual
¢ and N . It can be expected that errors in the isostatic model used
(e.g., an Airy-Heiskanen model) will largely cancel in this combined pro-
cedure of reduction and "anti-reduction."
The procedure is theoretically optimal and well suited for computer

_use. The integrability conditions, which in Helmert integration are
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represented by the closures of the individual triangles, are automatically
taken into account. The fact that the deflections of the vertical are
given only in a certain region has the effect that the geoid can only be
computed in that region. Since even by collocation, differences in geoidal
height between two neighboring stations A and B depend essentially only
on the deflections in those two stations, the lack of data outside the re-
gion under consideration will hardly cause a noticeable distortion. Note,
however, that the addition of a constant to all geoidal heights N will
not affect the deflections of the vertical; hence, astrogeodetic data de-
termine the genidal heights only up to an additive constant. This constant
may be chosen such that the average value of the computed N 1is zero, and
the result of collocation comes near to this case.

To get immediately nearly geocentric geoidal heights it is appropriate
to take into consideration a g]bba] trend which mainly affects Z and N
itself, by subtracting the effect of a suitahle global gravity field, say
the gravity earth model (given as a spherical-harmonic expansion up to de-
gree 180° x 180°) of Rapp (1981), following Sunkel (1983). This will be
described in the next section; in the present section we shall 1imit
ourselves to the isostatic reduction.

Computational procedure. It consists of the following steps:

1. Transformation of the astrogeodetic surface deflections & , n
from the local datum used for the geocentric Geodetic Reference System 1980
oy the weli-known differential formulas of Vening Meinesz (PG, sec. 5-9).
This is necessary since collocation requires a reference system which is as
realistic as possible.,

2. Application of the normal plumb line curvature (16) to the

"genmetric" surface deflections & , n gives the "dynamic" surface de-
flections € , 7 by (19).

3. Computation of the gravity anomalies Ag , also referred to the
earth's surface according to (8).

4. The topographic-isostatic reduction of € , m , Ag by (50)
and PG, eq. (B8-94) gives values & , n® , Ag¢ which, of

course, continue to refer to the surface point P .
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5. The application of collocation to & , f , A&y gives
height anomalies ¢ and co-geoid height N© , by simply varying the
elevation parameter ( H and zero , respectively) in the collocation
program.

6. By applying the indirect effect (57) and (47) we get actual
height anomalies ¢ and geoidal heights N .
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10. Geoid Computation for Austria

Sunkel (1983) has used least-squares collocation to calculate the

i geoid for the main part of Austria. In addition to the isostatic reduction o

according to Airy-Heiskanen (T = 30km) , he also removes a global trend )

by means of a earth gravity model, represented by a spherical-harmonic

- expansion up to a certain degree N . In particular, he used the model of 5

& Rapp (1981) with N = 180 . -
After removing the topographic-isostatic trend Tty and this global : »+

trend TEM ( EM denotes earth model), there remains a residual anomalous

potential &7 , given by

_ N N (81)
T=T-Trp-Tegw*Trp -

Since the earth model potential TEM is represented by a spherical-
harmonic expansion up to degree N , it may be appropriate to consider,
for the isostatic reduction, only the effect for degrees N > 180° ,

replacing 111 by

_ N (82)

(Trdns180° = Tr1 = Tr1 o i
where T?I represents a spherical-harmonic expansion for Ty truncated 1
at degree N = 180 . This explains eq. (81). fff‘
The observations % =( & , W , Ag ) , which represent I 3

linear functionals L;T ,are reduced in the same way, obtaining L
N N (83) -
& - LiTTI - LiTEM + LiTTI = LiGT . €
g
{
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Adding the earth model reduction to the computational procedure outlined at ];;44
the end of the preceding section, we thus have the following flow diagran: - j
e
T
. _-{.“}
(LiT) observations referred to .._..._J
' Geodetic Reference System 1930 ]
v 1
l reduction N N -
‘ TI, EM -Li(TTI * TEM TTI) .. J
i T
+
(L,8T)
|
—

I collocation

~

: . I
inverse reduction ! + T + TV ™
f TI, EM
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Data. The topography in Austria is rather varied, with elevations up
to 3800m . The density of astrogeodetic stations was 10 to 20 km ; the
total number of deflections data used was 521 . No gravity anomalies
vere used in this first computation.

The topographic-isostatic reduction of the deflections of the vertical
was made using a rather crude digital terrain model consisting of mean ele-
vations for 20" x 20" rectangles. It has heen obtained hy digitizing a
map 1:500000 . The standard error of this model is on the order of

+100m . Investigations have shown that, in spite of its poor accuracy,
the medel is reasonahly adequate for reduction of deflections of the verti-
cal (it is totally inadequate for gravity!). In fact, the reduction error
for & , n is approximately proportional to terrain inclination; it is
thus very small if the deflection station is situated in an area of
inclination zero. This is the case not only if the station lies in a
horizontal plane, but also if it lies on the top of a mountain, as most de-
flection stations do.

For the collocation computation, the covariance function of Jordan and
Heller (1978) was used for reasons of simplicity. The parameters of this
function were determined from the data.

Results. It turned out that almost all of the signal (T, N, )
comes from the topongraphic-isostatic model and the N = 180 gravity model
used. This part, TI +EM , lies between 41.5m and 47.5m . The
contribution of collocation (Y‘l T) lies between +0.5m , after
removal of a pronounced trend on the order of 3m .

The efficiency of topographic-isostatic reduction can also be seen
from the fact that topographic-isostatic has reduced the variance of the
deflections of the vertical in Austria (the square of the average size of ¢
and 0 ) from 30 arcsec? to 5 arcsec?

0f considerahle interest is the effect of analytical continuation on
the isostatically (+EM) reduced anomalous potential T . It is ex-
pressed hy the difference Y=l T at the earth's surface minus y~1 T
at sea level. This difference reaches a maximum of 13 cm in the Central

Alps and is otherwise positive and negative.
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Of even greater interest is the difference between height anomalies ;""“
( = v"IT at the earth's surface) and geoidal heights N ( = y~1T at _,;f;
sea level) . The maximum of 35m for & - N is reached at the jﬁf?}
Grossglockner mountain (H = 3800m) . The results are in good agreement R
with the approximate formula (PG, p. 327) ;“‘j
z - N = -(981gal)-l aAggH L
: : . o -
where Agg is the Bouguer anomaly in gal and H is the elevation in the »
same units as & and N . '
A comprehensive information on the geoid in Austria, with regard to
hoth observations and computations, can be found in (Lichtenegger, et al.,

1983), of which the main results have also been presented in English at the
XVIII General Assembly of IUGG/IAG in Hamburg, August 1983 (Bretterbauer,
1983; Erker, 1983; Grasegger, et al., 1983; Haitzmann, et al., 1983),.
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